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ABSTRACT
Outlier detection is a fundamental data science task with
applications ranging from data cleaning to network secu-
rity. Recently, a new class of outlier detection algorithms
has emerged, called contextual outlier detection, and has
shown improved performance when studying anomalous be-
havior in a specific context. However, as we point out in
this article, such approaches have limited applicability in
situations where the context is sparse (i.e., lacking a suit-
able frame of reference). Moreover, approaches developed
to date do not scale to large datasets. To address these
problems, here we propose a novel and robust approach al-
ternative to the state-of-the-art called RObust Contextual
Outlier Detection (ROCOD). We utilize a local and global be-
havioral model based on the relevant contexts, which is then
integrated in a natural and robust fashion. We run ROCOD

on both synthetic and real-world datasets and demonstrate
that it outperforms other competitive baselines on the axes
of efficacy and efficiency. We also drill down and perform
a fine-grained analysis to shed light on the rationale for the
performance gains of ROCOD and reveal its effectiveness when
handling objects with sparse contexts.

1. INTRODUCTION
“An outlier is an observation that deviates so much from

other observations as to arouse suspicion that it was gener-
ated by a different mechanism” [6]. Detecting outliers finds
applications in a wide range of domains including cyber-
intrusion detection, epidemiology studies, fraud detection,
and data cleaning. A number of efforts in this space have
treated all attributes, associated with a data point, in an
egalitarian fashion. However, in many domains, some at-
tributes are usually highly related to the outlier behavior,
called behavioral attributes or indicator attributes, while other
attributes only provide contexts of the behavior, termed
contextual attributes. It has been demonstrated recently
that by distinguishing contextual attributes from behav-
ioral attributes, the precision of outlier detection can be
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increased [4, 13, 14, 17, 5]. Formally, contextual outlier or
conditional anomaly is defined as an object with behavior
deviating from other objects with similar contextual infor-
mation [4, 13, 14]. Contextual attributes are used to define
the contexts, and objects sharing similar contexts with an
object form its reference group. Behavior attributes, on the
other hand, are used for examining outlierness in a specific
context, compared to the reference group.

One pitfall of existing contextual outlier detection meth-
ods is that they might fail to examine the outlierness of ob-
jects with sparse contexts. To intuitively show this, we use
a toy example of credit card fraud detection. For simplicity,
suppose we intend to detect suspicious transactions and only
monitor two variables, the annual income of cardholders and
the amount of each transaction (shown in Figure 1).

The Importance of Contextual Attributes: Though
contextual attributes are not directly related to the anoma-
lous behavior, they provide useful information on contexts
for outlier detection. In the example of Figure 1, transac-
tion amount and annual income can be respectively regarded
as the behavioral attribute and contextual attribute. If we
merely consider the behavioral attribute, then points G, E
and F will not be flagged as outliers, which is not reasonable.
Therefore, we need auxiliary information from the contex-
tual attributes to pinpoint the outliers.

Incorporating Contextual Attributes: One conven-
tional way to incorporate contextual attributes is treating
them similarly with behavioral attributes by concatenating
the two. In the example above, all the boundary points (A,
B, ..., G) will be reported as outliers. Another way is to use
existing contextual outlier detection techniques.Following the
definition of the contextual outlier, we can examine the dif-
ference of behavioral attribute between a point and other
points with the similar contextual attribute. One will then
report point C and D as outliers since their behavior values
(y values) are quite different from other points with similar
contextual values (x values).

Limitations of Existing Approaches: These two meth-
ods have limitations on addressing objects with sparse con-
texts (A, B, E, F and G). The former approach tends to
overestimate the outlierness of objects with unusual contexts
because the outlierness score can be directly contributed by
contextual attributes. Moreover, the latter approach fails
to properly examine the outlierness of objects with sparse
contexts. In fact, applying state-of-the-art contextual out-
lier detection algorithm [13] for the toy example, we obtain
outlierness score ranking of B > D > C > A � G,E, F .
However, a close look at our example reveals that A and B
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Figure 1: Toy example of contextual outliers.

should ideally not be flagged as outliers since they follow
the normal pattern between the two attributes that a lower
value in contextual attribute corresponds to a lower value
in behavioral attribute and vice versa. Therefore, we need a
more robust approach for outlier detection to distinguish E,
F, G with A and B, giving A and B lower outlierness scores.
To the best of our knowledge, this paper is the first piece of
work attempting to rectify this problem.

To this end, we propose a refined approach, called RO-
bust Contextual Outlier Detection (ROCOD), to better exploit
contextual attributes to assist outlier detection, ROCOD can
particularly address the problems caused by the contextual
sparsity, making it more robust towards broad outlier detec-
tion tasks. Specifically, we propose local expected behavior
and global expected behavior models that seek to understand
the dependence structure between behavioral attributes and
contextual attributes. Local expected behavior models are
designed to predict the behavior by referring to the objects
with similar context, called contextual neighbors. Global ex-
pected behavior models learn the dependence structure be-
tween contextual attributes and behavioral attributes from
the data, and infer the behavior in a holistic sense. We
then propose a regularized integration function to naturally
couple both types of behavior models based on the number
of contextual neighbors, which naturally accommodates ob-
jects with sparse contexts. We run ROCOD on both synthetic
and real-world datasets and compare it with five state-of-
the-art outlier detection techniques. Our experimental re-
sults show that ROCOD outperforms all the baselines on both
effectiveness (measured by different metrics) and efficiency.

2. ROCOD
To the best of our knowledge, none of the existing works

addresses the problem caused by the sparsity of contexts
in contextual outlier detection (see our extended paper [7]
for a detailed review of related work). In this section, we
introduce our RObust Contextual Outlier Detection (ROCOD)
approach to tackle this problem in detail.

2.1 Problem Formulation
Given a series of objects, the i-th object can be repre-

sented as

z(i) =
(

x(i)

y(i)

)
= (x

(i)
1 , x

(i)
2 , ..., x

(i)
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(i)
1 , y

(i)
2 , ..., y

(i)
B )T (1)

where z(i) is the whole attribute vector, x(i) is contextual at-
tribute vector and y(i) is behavioral attribute vector. With-
out loss of generality, we assume x(i) has C dimensions and

y(i) has B dimensions. Following this, the whole dataset can
be denoted as Z = 〈z(1), z(2), ..., z(N)〉, where N is the total
number of objects. Among them, we denote O as the set
of outliers. Given the dataset Z, our goal is to assign each
object i with an outlierness score Si so that outliers in O
have much higher values than other objects.

Conforming to the definition of the contextual outlier, the
outlierness of an object arises from the abnormal behavioral
attributes in its particular context. In other words, pro-
vided the contextual attributes, there is underlying pattern
restricting the behavioral attributes to some expected val-
ues, beyond which one object will be considered as an out-
lier. We here call it the dependent pattern and define the
expected behavior as follows.

Definition 1. Expected Behavior. For object i, the
expected behavior is the values of its behavioral attributes
predicted by the underpinning dependent pattern, given its
contextual attributes x(i).

Formally, denote the underpinning dependent pattern as a
function f(·) , then the expected behavior is

ŷ(i) = f(x(i)) (2)

Following the definition, a contextual outlier is the object
with behavioral attributes violating the dependent pattern
under its contextual attributes. We can gauge the outlier-
ness score of object i by measuring the difference of ŷ(i)

and y(i). Therefore, revealing the expected behavior of each
object is a crucial part of flagging contextual outliers.

However, it is nontrivial to find out the pattern function
f(·) and the expected behavior since the data distribution is
usually unknown and the data is inherently noisy. We next
discuss how we approach this problem from both a local and
global perspective and how to combine them.

2.2 Local Expected Behavior Modeling
We first study the dependent pattern and expected behav-

ior from the local aspect. We define contextual neighbors:

Definition 2. Contextual Neighbors. Contextual neigh-
bors of an object are the objects that are similar to it on
contextual attributes.

Formally, the set of contextual neighbors of object i is

CNi =
{
j : j ∈ D ∧ j 6= i ∧ sim(x(i), x(j)) ≥ α

}
(3)

where α is a predefined similarity threshold and sim(·) is
a similarity function of two vectors. D = {1, 2, ..., N} de-
notes the set of objects indexes. While sim(·) can be any
reasonable similarity function, we choose cosine similarity
here.

We then define local expected behavior as follows.

Definition 3. Local Expected Behavior. The local ex-
pected behavior of an object is the average values of behav-
ioral attributes among all its contextual neighbors.

This definition hinges on the underlying assumption of con-
textual outlier detection that objects with similar contextual
attributes share similar behavioral attributes [4, 13, 14] and
is also a natural extension of Tobler’s first law of geogra-
phy [16]. To formalize it, the expected behavior of object i

given contextual attributes x(i) is

ŷ(i) = Φ(x(i)) =

∑
j∈CNi

y(j)

|CNi|
(4)



where Φ(·) denotes local behavior pattern.
The local behavior pattern is tightly tied to the defini-

tion of contextual outlier detection and is supposed to di-
rectly reflect the dependent relationship between behavioral
attributes and contextual attributes. Moreover, it does not
make any assumption on the distribution of data. While this
local property has been widely used in spatial and temporal
outlier detection [19, 8], we generalize it to a broader range
of applications with arbitrarily defined contexts. However,
since the local expected behavior relies on the contextual
neighbors, it will be inapplicable if one object does not have
contextual neighbors. Therefore, the local expected behav-
ior cannot be inferred for all the objects and we need a more
robust way to compute the expected behavior.

2.3 Global Expected Behavior Modeling
We now introduce a global approach to capture the under-

lying dependent pattern in the data and infer the expected
behavior, called global expected behavior. A natural way of
capturing the global dependent relationship between behav-
ioral attributes and contextual attributes is to adopt regres-
sion models. For each behavioral attribute, we can learn
a regression model considering contextual attributes as fea-
tures and the behavioral attributes as the target values. In
total, we learn B regressors from the dataset with B be-
havioral attributes. With the regression models, we hereby
define global expected behavior.

Definition 4. Global Expected Behavior. The global
expected behavior of an object is the values of behavioral at-
tributes predicted by the regression models taking its contex-
tual attributes as input.

Formally, the global expected behavior of object i is

ŷ(i) = Ψ(x(i)) (5)

where Ψ(·) incorporates the regression models learned from
the whole dataset using contextual attributes as indepen-
dent variables and behavioral attributes as dependent vari-
ables. Ψ(·) takes the contextual attributes x(i) as input and

outputs the expected behavior attribute vector ŷ(i). Note
that we can adopt any regression model here, either linear
or non-linear. Obviously, this manner of behavior modeling
is a holistic approach since the regression models are learned
from the whole dataset.

2.4 Ensemble Expected Behavior
So far we have introduced two different perspectives to

depict the underpinning relationship between behavioral at-
tributes and contextual attributes, and used them to com-
pute local and global expected behavior. Local expected
behavior adopts the contextual neighbors as the reference
frame while global expected behavior is predicted by adopt-
ing the regression models learned from the whole dataset.

These two ways of inferring expected behavior offer com-
plementary benefits. Local expected behavior is a model-free
approach and should have a lower bias when the number of
contextual neighbors is large. However, local expected be-
havior contains larger variance in general and is prone to
noise, especially when the number of contextual neighbors
is small. In fact, it cannot be applied at all when there
is no contextual neighbor. On the other hand, global ex-
pected behavior infers the values considering the dependent
relationship between the two categories of attributes in a

holistic way. Therefore, it is expected to contain smaller
variance and is more robust against noise. However, its bias
tends to be larger since it cannot capture the fine-grained
local pattern for each object.

Considering the different advantages of the two approaches,
we intend to find an appropriate manner to integrate them.
One possible method is to simply take a weighted sum of
them with pre-defined weights. However, it is not trivial to
determine reasonable weights and the issue of zero contex-
tual neighbors still remains.

To resolve these issues, we propose an adaptive weighted
sum to integrate these two methods. Instead of fixing the
weights for all objects, we adjust the weights according to
the number of contextual neighbors of each object. Given
an object i, we define the ensemble expected behavior as

ŷ(i) = λi · Φ(x(i)) + (1− λi) ·Ψ(x(i)) (6)
where

λi =

√
|CNi|

max
1≤j≤N

√
|CNj |

. (7)

Here, Φ(x(i)) and Ψ(x(i)) are respectively local expected be-
havior and global expected behavior as defined in Equation 4
and Equation 5. The intuition behind this weighted com-
bination is that if an object has a sufficient number of con-
textual neighbors, we believe the contextual neighbors are
a reliable reference frame and place more weight on local
expected behavior. Otherwise, we put more weight on the
global metric. In addition, we take the square root transfor-
mation on |CNi| to improve the normality of λi ·Φ(x(i)) [2].

By setting weight on local expected behavior proportional
to the square root of the number of contextual neighbors, the
model is more robust and can appropriately deal with con-
text sparsity. In particular, it properly solves the problem
of zero contextual neighbors by naturally setting the weight
of local expected behavior to zero when |CNi| = 0.

With the ensemble expected behavior for each object, we
measure the outlierness score of object i by the difference of
expected behavior ŷ(i) and real behavior y(i), specifically by

the L2-norm
∥∥∥y(i) − ŷ(i)∥∥∥

2
. Here, the L2-norm of the differ-

ence assumes each behavioral attribute contributes equally
to the outlierness score. However, this might not be true
since the attributes can have different credibility at flagging
the outlier. For example, if the real values of one behav-
ioral attribute are highly consistent with the expected ones,
indicating the pattern is well captured by our approach as
a whole, then a slight difference of real value and expected
value should be a strong sign of outlierness. Following this
intuition, we weight each behavioral attribute based on how
good the expected behavior on capturing the real behavior
values. For each behavioral attribute, we use the coeffi-
cient of determination [9] to measure consistency between
the real behavior and the expected one. For j-th behavioral
attribute, the coefficient of determination is calculated by

R2(yj , ŷj) = 1−

∑
1≤i≤N

(yj
(i) − ŷ(i)j )2∑

1≤i≤N

(yj(i) − ȳj)2
(8)

where ȳj = 1
N

∑
1≤i≤N

yj
(i), yj

(i) is the value of j-th behavioral

attribute for object i, and ŷ
(i)
j is the expected value of it

using our approach. We define the weight of j-th behavioral



attribute as wj = max(R2(yj , ŷj), 0) and therefore the range
of wj is [0, 1]. We now can calculate the outlierness score of
object i using

Si =
∥∥∥WT (y(i) − ŷ(i))

∥∥∥
2

(9)

where W = (w1, w2, ..., wB)T .
ROCOD detects outliers using Equation 9. Specifically, ROCOD

uses it to capture the outlierness score for each object and
the n objects with highest outlierness scores are selected as
outliers, where n is the number of outliers defined by users.

Furthermore, we scale up our algorithm by leveraging Lo-
cality Sensitive Hashing (LSH) to efficiently find the contex-
tual neighbors and parallelizing the computation. See more
details in the extended version of this paper [7].

3. EXPERIMENTS AND ANALYSIS
In this section, we run ROCOD on several datasets and com-

pare the performance with a series of baselines. For more de-
tails about experiment setup and analysis, see the extended
paper [7].

3.1 Experimental Setup

3.1.1 Dataset and Data Preprocessing
Evaluating contextual outlier detection algorithms is chal-

lenging due to the lack of ground truth. In this paper, we
employ six datasets to evaluate the performance of our al-
gorithm, two of which contain labeled ground-truth outliers.
For the four datasets without ground-truth outliers, we in-
ject contextual outliers using the perturbation scheme de-
scribed by Song et al. [13] – a de-facto standard for evalu-
ating contextual outlier detection techniques. This scheme
works as follows. To inject one outlier into a dataset with
N objects, we uniformly select an object z(i) = (x(i), y(i))T

at random. We then randomly select p = min(50, N
4

) ob-
jects from the dataset, among which we pick the object
z(j) = (x(j), y(j))T such that the Euclidean distance be-

tween y(i) and y(j) is maximized. We add a new object
z′ = (x(i), y(j))T into the dataset as a contextual outlier 1.

The basic information of the six datasets is shown in Ta-
ble 1. It includes: 1) Synthetic dataset, which is gener-
ated using the CAD model [13]. 2) Bodyfat dataset from
CMU statlib 2, where attributes on body fat percentage
are treated as behavioral attributes and other physical fea-
tures are considered as contextual attributes. 3) ElNino
dataset from UCI ML repository 3, where we use the tem-
poral and spatial attributes as contextual attributes and re-
gard attributes on winds, humidity and temperature as be-
havioral attributes. 4) Houses dataset from CMU statlib,
where we use the house price as the behavioral attributes
and other attributes as contextual attributes (such as me-
dian income). 5) YouTube-Twitter dataset from previous
work [1], where attributes from Twitter are adopted as con-
textual attributes while the attributes from YouTube are
regarded as behavioral attributes. 6) Kddcup99 dataset
adapted from KDD Cup 1999 4, where we only retain u2r

1In total, we inject 1% ∗N outliers into the dataset (except
for Bodyfat due to the small size of the dataset).
2ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/
3https://archive.ics.uci.edu/ml/datasets/El+Nino
4http://kdd.ics.uci.edu/databases/kddcup99/task.html

and r2l attacks and treat them as outliers while removing
other attacks [10]. Moreover, considering that service, du-
ration, src bytes and dst bytes are most essential attributes
for intrusion behavior [20], we use them as behavioral at-
tributes and the rest of attributes are treated as contextual
attributes.

3.1.2 Baselines and Evaluation Metrics
We compare ROCOD to the state-of-the-art approaches on

outlier detection. They contain 1) Conditional Anomaly De-
tection (CAD) proposed by Song et al. [13]. 2) Locality Sen-
sitive Outlier Detection (LSOD) [18], which is a represen-
tative of distance-based anomaly detection algorithm lever-
aging locality-sensitive hashing and other techniques [11] for
efficiency optimization. 3) Local Outlier Factor (LOF) [3],
which is a local method comparing the local reachability
density of each node to its neighbors. 4) Connectivity-based
Outlier Factor (COF) [15], an extension of LOF differenti-
ating low density from isolation. 5) Gaussian Mixture Model
(GMM) [12] measuring the outlierness score by probability
density.

These approaches output a full list of objects ranked by
their outlierness scores with higher ones on the top, and
return the first n objects as outliers. To comprehensively
evaluate the performance of outlier detection, we use three
different metrics: 1) AUC of Precision-Recall Curve. 2) Top-
n Precision, defined as the precision of the objects ranked
among top-n, which is also called precision at n. 3) Top-n
normalized Discounted Cumulative Gain (nDCG), measur-
ing the effectiveness of ranking for the first n objects.

3.2 Experiment Results and Analysis
We run the experiments on a Linux Machine with two

Intel Xeon x5650 2.67GHz CPUs. It contains 12 cores and
48GB of RAM. All the algorithms are implemented in C++

and compiled using Intel compiler. OpenMP is used to exploit
the parallelism. Also, we have the following settings for the
outlier detection methods: 1) For CAD and GMM, we set
the number of Gaussian components as 30 and the maximum
number of EM iterations as 100. 2) For LSOD, we use the
distance to the 30-th nearest neighborhood as the outlier
score. 3) For COF and LOF, we set the range of size of
neighborhoods from 10 to 100 as suggested by the authors.
4) For ROCOD, the cosine similarity threshold α is chosen
by looking at the distribution of randomly sampled pairs of
objects (more details in [7]). We choose Ridge regression
for the linear model and tree regression for the nonlinear
model, denoted as ROCOD_1 and ROCOD_2 respectively. As
comparisons, we also use only local expected behavior and
global expected behavior to flag outliers, denoted as LEB
and GEB. Results are shown in Table 2, which presents the
performance of each approach on detecting outliers in all the
datasets, measured by three different metrics. We highlight
some observations below.
1) We can see that ROCOD (either ROCOD_1 or ROCOD_2) per-
forms the best at almost all the datasets. In some datasets,
especially Synthetic, Houses and KDDcup99, ROCOD signif-
icantly outperforms other baselines on all three evaluation
metrics. For example, the top-100 precision of ROCOD_2 on
KDDcup99 is twice as much as the best of baselines (CAD).
The advantage of ROCOD is more pronounced in terms of top-
n metrics, indicating our method is able to show outliers at
the top more precisely. In Synthetic and ElNino dataset,



Datasets Outliers # Objects N # Outliers
Contextual
Attributes

Behavior
Attributes

Synthetic Injected by perturbation scheme. 50,500 500 20 20
Bodyfat Injected by perturbation scheme. 277 25 13 2
ElNino Injected by perturbation scheme. 94,874 939 6 5
Houses Injected by perturbation scheme. 20,846 206 8 1
YouTube-Twitter Promotional users. 62,458 2,974 48 41
Kddcup99 u2r and r2l attacks. 98,372 1,094 47 69

Table 1: Basic information of the datasets. Outliers are injected by perturbation scheme for datasets without ground truth.

Synthetic

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.392 0.913 0.781 0.679 0.628 0.055 0.265 0.384 0.135
Top-100 Precision 0.740 0.950 0.890 0.860 0.880 0.150 0.450 0.710 0.230
Top-100 nDCG 0.749 0.960 0.867 0.877 0.891 0.192 0.431 0.730 0.280

Bodyfat

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.750 0.750 0.614 0.750 0.750 0.430 0.644 0.725 0.667
Top-10 Precision 0.900 1.000 0.800 0.900 0.900 0.400 0.300 0.400 0.300
Top-10 nDCG 0.936 1.000 0.875 0.933 0.936 0.287 0.206 0.305 0.215

ElNino

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.670 0.990 0.964 0.883 0.220 0.461 0.806 0.797 0.767
Top-100 Precision 0.960 1.000 0.990 1.000 0.400 0.790 1.000 0.950 1.000
Top-100 nDCG 0.970 1.000 0.968 1.000 0.404 0.825 1.000 0.947 1.000

Houses

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.656 0.766 0.312 0.634 0.232 0.135 0.101 0.116 0.119
Top-100 Precision 0.740 0.840 0.300 0.650 0.350 0.210 0.080 0.260 0.250
Top-100 nDCG 0.694 0.860 0.226 0.717 0.461 0.222 0.067 0.247 0.245

YouTube-Twitter

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.141 0.146 0.136 0.124 0.125 0.131 0.124 0.105 0.106
Top-100 Precision 0.530 0.470 0.440 0.360 0.370 0.180 0.280 0.230 0.260
Top-100 nDCG 0.605 0.440 0.426 0.413 0.362 0.168 0.272 0.223 0.240

KDDcup99

Metrics ROCOD_1 ROCOD_2 LEB GEB CAD GMM LSOD LOF COF
PRC (AUC) 0.137 0.143 0.071 0.051 0.027 0.128 0.027 0.019 0.014
Top-100 Precision 0.390 0.600 0.070 0.020 0.300 0.000 0.070 0.020 0.000
Top-100 nDCG 0.293 0.518 0.129 0.031 0.316 0.000 0.085 0.015 0.000

Table 2: Performance comparisons of baselines on 6 datasets. ROCOD_1 uses the linear model in the global expected behavior
while ROCOD_2 adopts the non-linear model. LEB and GEB are the approaches utilizing only local expected behavior and
global expected behavior (with non-linear model) respectively. Three metrics are used to evaluate the performance (higher is
better). Best performances w.r.t. each metric are shown in bold.

the top-100 precision and nDCG of our approach is almost
perfect (very close to 1.0).
2) Without separating contextual and behavioral attributes,
general outlier detection approaches (e.g., LSOD, LOF and
COF), perform poorly on the datasets. This issue is more
evident on Bodyfat and Houses dataset, which contain more
contextual attributes than behavioral attributes. The main
reason is that these approaches simply combine contextual
attributes with behavioral attributes and the effect of con-
textual attributes on outlierness score may obfuscate the
role of behavioral attributes. This phenomenon is obvious
on the dataset of Houses and Kddcup99.
3) ROCOD with the non-linear model for global expected be-

havior (ROCOD_2) outperforms the one with the linear model
(ROCOD_1). This is not surprising and consistent with our
intuition that the non-linear model is more capable of mod-
eling the complex relationship among attributes. In fact,
ROCOD_2 obtains the best performance in all the datasets
except YouTube-Twitter, where ROCOD_1 performs the best
on top-100 precision and nDCG while ROCOD_2 is better in
terms of AUC of the precision-recall curve.

We also measure the wall-clock running time of all the
methods and find out that ROCOD is more efficient than other
baselines. Refer to the extended paper for more experimen-
tal results on the scalability of ROCOD [7].



3.3 Drilling Down on Efficacy Gains
Here, we drill-down to distil the performance gains of

ROCOD. We take Kddcup99 dataset as an example and visual-
ize outliers flagged by different methods among all other ob-
jects in 2-D coordinates. In order to visualize high-dimensional
data, we extract the largest component from the contextual
attributes space and behavioral attributes space respectively
and plot the data points directly in the 2-D coordinate. Fig-
ure 2 shows the visualization of all the objects. Green dia-
monds are outliers correctly identified while black diamonds
are normal objects but flagged incorrectly as outliers by the
approaches. We show the top-100 outliers detected by each
method and the precision is shown at the upper right corner
of each plot. We include the results from LSOD, CAD and
ROCOD, which are the three best approaches in this dataset.
Moreover, we also identify 100 objects with sparsest con-
texts, i.e., their contextual attributes are very different from
others (marked as red dots in Figure 2d).

Outliers Correctly Detected Wrongly Detected as Outliers Objects with Sparsest Context Others

With sparse context.

(a) Top 100 outliers using LSOD

With sparse context.

(b) Top 100 outliers using CAD

(c) Top 100 outliers using ROCOD (d) Objects with Sparsest Context

Figure 2: Visualization of Kddcup99 dataset in the 2-D coordinate.
(a)-(c) show outliers detected by different approaches. Red round
circles in (a) and (b) highlight objects with sparsest contexts. Black
round circles in (b) and (c) highlight the same clusters of outliers
correctly detected by CAD and ROCOD. (d) shows 100 objects with the
sparsest contextual attributes, indicated by red dots.

Comparing Figure 2c with Figure 2a and Figure 2b, we no-
tice that LSOD and CAD tend to mistakenly detect similar
groups of normal objects as outliers, which are highlighted
in red circles in the plots (Figure 2a and Figure 2b), while
ROCOD avoids similar mistakes. To understand the reason for
this observation, we look at these groups of objects in Fig-
ure 2d and find out that most of them are show in red dots
and therefore are objects containing sparse contextual at-
tributes. This strongly supports our statement that existing
outlier detection techniques (such as LSOD and CAD) tend
to assign higher outlierness scores to objects with anomalous
contextual attributes though they are normal considering
their behavioral attributes. Even state-of-the-art approach
CAD cannot properly resolve this issue. ROCOD, however, is
not affected much by these objects and is able to impartially
measure the outlierness scores of them. Moreover, it is also
interesting to observe that though ROCOD and CAD are two
totally different approaches, they correctly detect the same
group of outliers, circled by black bold rectangles in Fig-
ure 2b and 2c. In general, ROCOD is much better than CAD
at correctly identifying outliers in this dataset.

4. CONCLUSION
We propose ROCOD to exploit contextual attributes for de-

tecting outliers, particularly dealing with the sparsity of con-
text. We introduce local expected behavior and global ex-
pected behavior models to infer the behavioral attributes
and describe a natural algorithm to fuse them. Experimen-
tal results show that ROCOD detects outliers more accurately
and efficiently than prior approaches.
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